Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 835
1.
Proc Natl Acad Sci U S A ; 121(19): e2322934121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38701119

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.


Protein Kinase Inhibitors , Humans , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Endometriosis/drug therapy , Endometriosis/metabolism , Endometriosis/pathology , DNA/metabolism , Receptors, Eph Family/metabolism , Receptors, Eph Family/antagonists & inhibitors , Receptor, EphA2/metabolism , Receptor, EphA2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Cell Movement/drug effects
2.
Nat Microbiol ; 9(5): 1256-1270, 2024 May.
Article En | MEDLINE | ID: mdl-38649412

Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.


Antigens, Differentiation , Ephrin-A2 , Epithelial Cells , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Receptor, EphA2 , Virus Internalization , Humans , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epithelial Cells/virology , Epithelial Cells/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Receptor, EphA2/metabolism , Ephrin-A2/metabolism , Ephrin-A2/genetics , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Animals , HEK293 Cells , Protein Binding , Mice , Cell Line
3.
Dalton Trans ; 53(18): 7946-7952, 2024 May 07.
Article En | MEDLINE | ID: mdl-38646723

The absence of better biomarkers currently limits early diagnosis and treatment of triple-negative breast cancer (TNBC). Our previously published study reported that the cyclic-peptide SD01 exhibited specific binding to EphA2 (Ephrin type-A receptor 2) on TNBC. To develop a novel PET imaging agent, we prepared gallium-68 (68Ga) labeled-DOTA-SD01 and evaluated its specificity and effectiveness through micro PET/CT imaging in a TNBC-bearing mouse model. SD01 and a control linear peptide YSA were conjugated to DOTA and subsequently labeled with 68Ga, obtaining 68Ga-DOTA-SD01 and 68Ga-DOTA-YSA. Both showed high radiochemical purity, stability, good hydrophilicity, and high binding affinity to 4T1 cells. Micro PET/CT imaging showed high radioactivity accumulation in tumors; SUVmean (mean standardized uptake value) of tumors in the group of 68Ga-DOTA-SD01 was 3.34 ± 0.25 and 2.65 ± 0.32 in the group of 68Ga-DOTA-YSA; T/NT ratios (target to non-target, SUVmean ratios of tumor to muscle) were 3.12 ± 0.06 and 2.77 ± 0.11 at 30 min, respectively (p < 0.05). The biodistribution study showed that tumor uptake % ID per g (percentage of injected dose per gram of tissue) in the group of 68Ga-DOTA-SD01 was 2.73 ± 0.34, and 1.77 ± 0.38 in the group of 68Ga-DOTA-YSA; T/NT ratios (radioactivity of tumor to muscle) were 3.55 ± 0.12 and 3.05 ± 0.10 for both groups at 30 min, respectively (p < 0.05). All these suggest that 68Ga-DOTA-SD01 may act as a better novel PET imaging agent for EphA2 positive tumors, such as TNBC.


Gallium Radioisotopes , Peptides, Cyclic , Receptor, EphA2 , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/diagnostic imaging , Gallium Radioisotopes/chemistry , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Receptor, EphA2/metabolism , Mice , Female , Cell Line, Tumor , Positron Emission Tomography Computed Tomography , Tissue Distribution , Mice, Inbred BALB C , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Radiopharmaceuticals/chemistry , Positron-Emission Tomography
4.
Cancer Genomics Proteomics ; 21(3): 285-294, 2024.
Article En | MEDLINE | ID: mdl-38670584

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue. MATERIALS AND METHODS: The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue. RESULTS: The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody. CONCLUSION: The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.


Colorectal Neoplasms , Receptor, EphA2 , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Humans , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , Animals , Mice , Cell Line, Tumor , Mice, Nude
5.
Molecules ; 29(5)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38474536

The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.


Neoplasms , Receptor, EphA2 , Sterile Alpha Motif , Receptor, EphA2/chemistry , Protein Binding , Mutation , Phosphoric Monoester Hydrolases/metabolism , Lipids
6.
J Mol Med (Berl) ; 102(4): 479-493, 2024 Apr.
Article En | MEDLINE | ID: mdl-38393661

Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.


Erythropoietin , Neoplasms , Receptor, EphA2 , Humans , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Receptor, EphA2/metabolism
7.
Mol Biol Rep ; 51(1): 337, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393520

The protein encoded by the ephrin type-A receptor 2 (EphA2) gene is a member of the ephrin receptor subfamily of the receptor tyrosine kinase family (RTKs). Eph receptors play a significant role in various biological processes, particularly cancer progression, development, and pathogenesis. They have been observed to regulate cancer cell growth, migration, invasion, tumor development, invasiveness, angiogenesis, and metastasis. To target EphA2 activity, various molecular, genetic, biochemical, and pharmacological strategies have been extensively tested in laboratory cultures and animal models. Notably, drugs, such as dasatinib, initially designed to target the kinase family, have demonstrated an additional capability to target EphA2 activity. Additionally, a novel monoclonal antibody named EA5 has emerged as a promising option to counteract the effects of EphA2 overexpression and restore tamoxifen sensitivity in EphA2-transfected MCF-7 cells during in vitro experiments. This antibody mimicked the binding of Ephrin A to EphA2. These methods offer potential avenues for inhibiting EphA2 activity, which could significantly decelerate breast cancer progression and restore sensitivity to certain drugs. This review article comprehensively covers EphA2's involvement in multiple malignancies, including ovarian, colorectal, breast, lung, glioma, and melanoma. Furthermore, we discuss the structure of EphA2, the Eph-Ephrin signaling pathway, various EphA2 inhibitors, and the mechanisms of EphA2 degradation. This article provides an extensive overview of EphA2's vital role in different types of cancers and outlines potential therapeutic approaches to target EphA2, shedding light on the underlying molecular mechanisms that make it an attractive target for cancer treatment.


Neoplasms , Receptor, EphA2 , Animals , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Ephrins/pharmacology , Cell Line, Tumor
8.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38214254

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Antimalarials , Malaria , Receptor, EphA2 , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Structure-Activity Relationship , Africa , Plasmodium falciparum
9.
J Int Med Res ; 52(1): 3000605231218559, 2024 Jan.
Article En | MEDLINE | ID: mdl-38180878

OBJECTIVES: We aimed to examine the significance of ephrin receptor A2 (EphA2) expression in pancreatic adenocarcinoma (PAAD) and its associated mechanism. METHODS: EphA2 mRNA expression patterns were compared in pancreatic cancer and normal tissues using GEPIA. Kaplan-Meier analysis was used to examine the correlation between EphA2 expression and PAAD patient prognosis. EphA2 gene methylation and associations with tumor immune cell infiltration were analyzed with UALCAN and TIMER, respectively. EphA2-interacting proteins were investigated with GeneMANIA, while STRING helped predict potentially relevant signaling pathways. EphA2 protein expression was examined with immunohistochemistry (IHC) in PAAD patient tissues. RESULTS: EphA2 was highly expressed in pancreatic cancer tissues and associated with pathological stage. PAAD patients with high EphA2 expression had shorter overall survival and disease-free survival times. EphA2 expression levels were significantly and positively associated with CD4+ T cell infiltration. EphA2 can interact with ENFNA1, ACP1, and CDC42. High EphA2 mRNA expression was enriched for regulation of cell size and cell proliferation. IHC assays suggested that pancreatic cancer tissues had higher EphA2 protein levels than normal pancreatic tissues. CONCLUSIONS: EphA2 is highly expressed in PAAD and closely related to poor patient prognosis, and is therefore a potential biomarker and target for PAAD diagnosis and treatment.


Adenocarcinoma , Pancreatic Neoplasms , Receptor, EphA2 , Humans , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Receptor, EphA2/genetics , Prognosis , RNA, Messenger/genetics , Ephrins
10.
Antimicrob Agents Chemother ; 68(2): e0081123, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38206037

Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. ß-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. ß-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae ß-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal ß-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.


Benzamides , Niacinamide/analogs & derivatives , Pneumocystis carinii , Pneumocystis , Pneumonia, Pneumocystis , Receptor, EphA2 , beta-Glucans , Mice , Animals , beta-Glucans/metabolism , Receptor Protein-Tyrosine Kinases , Pneumonia, Pneumocystis/microbiology , Macrophages/microbiology , Immunocompromised Host
11.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38279277

Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer.


Endometrial Neoplasms , Histone Deacetylase Inhibitors , Receptor, EphA2 , Animals , Female , Humans , Mice , Apoptosis , Cell Line, Tumor , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Histone Deacetylase Inhibitors/therapeutic use , Panobinostat/pharmacology , Panobinostat/therapeutic use , Phosphatidylinositol 3-Kinases , Molecular Targeted Therapy , Receptor, EphA2/antagonists & inhibitors
12.
Science ; 382(6674): 1042-1050, 2023 12.
Article En | MEDLINE | ID: mdl-37972196

Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.


Protein Multimerization , Receptor, EphA2 , Tumor Suppressor Proteins , Humans , Ligands , Neoplasm Invasiveness , Phosphorylation , Receptor, EphA2/chemistry , Receptor, EphA2/metabolism , Signal Transduction , Spectrometry, Fluorescence , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
13.
J Chem Inf Model ; 63(21): 6900-6911, 2023 11 13.
Article En | MEDLINE | ID: mdl-37910792

With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.


Receptor, EphA2 , Receptor, EphB2 , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Receptor, EphA2/antagonists & inhibitors , Receptor, EphB2/antagonists & inhibitors
14.
Aging (Albany NY) ; 15(22): 12952-12965, 2023 11 16.
Article En | MEDLINE | ID: mdl-37980165

Colorectal cancer is one of the most common malignant tumors in the digestive system, and its high incidence and metastasis rate make it a terrible killer that threatens human health. In-depth exploration of the targets affecting the progression of colorectal cancer cells and the development of specific targeted drugs for them are of great significance for the prognosis of colorectal cancer patients. Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph subfamily with tyrosine kinase activity, plays a key role in the regulation of signaling pathways related to the malignant phenotype of various tumor cells, but its specific regulatory mechanism in colorectal cancer needs to be further clarified. Here, we found that EphA2 was abnormally highly expressed in colorectal cancer and that patients with colorectal cancer with high EphA2 expression had a worse prognosis. We also found that EphA2 can form liquid-liquid phase separation condensates on cell membrane, which can be disrupted by ALW-II-41-27, an inhibitor of EphA2. In addition, we found that EphA2 expression in colorectal cancer was positively correlated with the expression of ferroptosis-related genes and the infiltration of multiple immune cells. These findings suggest that EphA2 is a novel membrane protein with phase separation ability and is associated with ferroptosis and immune cell infiltration, which further suggests that malignant progression of colorectal cancer may be inhibited by suppressing the phase separation ability of EphA2.


Colorectal Neoplasms , Erythropoietin , Ferroptosis , Receptor, EphA2 , Humans , Cell Line, Tumor , Cell Membrane/metabolism , Colorectal Neoplasms/pathology , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Signal Transduction
15.
J Orthop Surg Res ; 18(1): 811, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37904187

PURPOSE: In osteoporosis, the balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is disrupted. The osteogenic differentiation of bone marrow MSCs (BMSCs) is important for improving osteoporosis. The aim of this study was to explore the role and molecular mechanism of miR-210 in the balance of osteogenic/adipogenic differentiation of BMSCs in postmenopausal osteoporosis. METHODS: Postmenopausal osteoporosis rat models were constructed by ovariectomy (OVX). BMSCs were isolated from the femur in rats of Sham and OVX groups. MiR-210 was overexpressed and suppressed by miR-210 mimics and inhibitor, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative mRNA expression of miR-210, ephrin type-A receptor 2 (EPHA2), alkaline phosphatase (ALP), osterix (OSX), osteocalcin (Bglap), Runt-related transcription factor 2 (Runx2), peroxisome proliferator activated receptor gamma, and fatty acid binding protein 4 (FABP4) in each group of rat femoral tissues or BMSCs. Western blot was applied to detect the protein expression level of EPHA2 in rat femoral tissues and cells. Alizarin red S staining and oil red O staining were performed to assess the osteogenic and adipogenic differentiation of BMSCs, respectively. In addition, the targeting relationship between miR-210 and EPHA2 was verified by a dual luciferase gene reporter assay. RESULTS: The expression of miR-210 was significantly reduced in femoral tissues and BMSCs of OVX rats, and its low expression was associated with reduced bone formation. The osteogenic differentiation was enhanced in OVX rats treated with miR-210 mimic. Overexpression of miR-210 in transfected BMSCs was also found to significantly promote osteogenic differentiation and even inhibit adipogenic differentiation in BMSCs, while knockdown of miR-210 did the opposite. Further mechanistic studies showed that miR-210 could target and inhibit the expression of EPHA2 in BMSCs, thus promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs. CONCLUSION: MiR-210 promotes osteogenic differentiation and inhibits adipogenic differentiation of BMSCs by down-regulating EPHA2 expression. As it plays an important role in the osteogenic/adipogenic differentiation of osteoporosis, miR-210 can serve as a potential miRNA biomarker for osteoporosis.


Mesenchymal Stem Cells , MicroRNAs , Osteoporosis, Postmenopausal , Osteoporosis , Animals , Female , Rats , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Receptor, EphA2/metabolism
16.
ChemMedChem ; 18(23): e202300420, 2023 12 01.
Article En | MEDLINE | ID: mdl-37736700

The ephrin type-A 2 receptor tyrosine kinase (EPHA2) is involved in the development and progression of various cancer types, including colorectal cancer (CRC). There is also evidence that EPHA2 plays a key role in the development of resistance to the endothelial growth factor receptor (EGFR) monoclonal antibody Cetuximab used clinically in CRC. Despite the promising pharmacological potential of EPHA2, only a handful of specific inhibitors are currently available. In this concept paper, general strategies for EPHA2 inhibition with molecules of low molecular weight (small molecules) are described. Furthermore, available examples of inhibiting EPHA2 in CRC using small molecules are summarized, highlighting the potential of this approach.


Colorectal Neoplasms , Receptor, EphA2 , Humans , Receptor, EphA2/metabolism , Receptors, Vascular Endothelial Growth Factor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
17.
J Mol Model ; 29(7): 204, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37291458

CONTEXT: Ephrin type A receptor 2 (EphA2) is a well-known drug target for cancer treatment due to its overexpression in numerous types of cancers. Thus, it is crucial to determine the binding interactions of this receptor with both the ligand-binding domain (LBD) and the kinase-binding domain (KBD) through a targeted approach in order to modulate its activity. In this work, natural terpenes with inherent anticancer properties were conjugated with short peptides YSAYP and SWLAY that are known to bind to the LBD of EphA2 receptor. We examined the binding interactions of six terpenes (maslinic acid, levopimaric acid, quinopimaric acid, oleanolic, polyalthic, and hydroxybetulinic acid) conjugated to the above peptides with the ligand-binding domain (LBD) of EphA2 receptor computationally. Additionally, following the "target-hopping approach," we also examined the interactions of the conjugates with the KBD. Our results indicated that most of the conjugates showed higher binding interactions with the EphA2 kinase domain compared to LBD. Furthermore, the binding affinities of the terpenes increased upon conjugating the peptides with the terpenes. In order to further investigate the specificity toward EphA2 kinase domain, we also examined the binding interactions of the terpenes conjugated to VPWXE (x = norleucine), as VPWXE has been shown to bind to other RTKs. Our results indicated that the terpenes conjugated to SWLAY in particular showed high efficacy toward binding to the KBD. We also designed conjugates where in the peptide portion and the terpenes were separated by a butyl (C4) group linker to examine if the binding interactions could be enhanced. Docking studies showed that the conjugates with linkers had enhanced binding with the LBD compared to those without linkers, though binding remained slightly higher without linkers toward the KBD. As a proof of concept, maslinate and oleanolate conjugates of each of the peptides were then tested with F98 tumor cells which are known to overexpress EphA2 receptor. Results indicated that the oleanolate-amido-SWLAY conjugates were efficacious in reducing the cell proliferation of the tumor cells and may be potentially developed and further studied for targeting tumor cells overexpressing the EphA2 receptor. To test if these conjugates could bind to the receptor and potentially function as kinase inhibitors, we conducted SPR analysis and ADP-Glo assay. Our results indicated that OA conjugate with SWLAY showed the highest inhibition. METHODS: Docking studies were carried out using AutoDock Vina, v.1.2.0; Molecular Dynamics and MMGBSA calculations were carried out through Schrodinger Software DESMOND.


Receptor, EphA2 , Receptor, EphA2/chemistry , Receptor, EphA2/metabolism , Terpenes/pharmacology , Ligands , Peptides/chemistry , Protein Binding
18.
PLoS Pathog ; 19(5): e1011304, 2023 05.
Article En | MEDLINE | ID: mdl-37146061

Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.


Cytomegalovirus Infections , Glioblastoma , Receptor, EphA2 , Humans , Viral Envelope Proteins/metabolism , Glioblastoma/genetics , Cytomegalovirus/physiology , Receptor, EphA2/genetics
19.
Nat Commun ; 14(1): 2756, 2023 05 13.
Article En | MEDLINE | ID: mdl-37179400

The hepatotoxicity of regorafenib is one of the most noteworthy concerns for patients, however the mechanism is poorly understood. Hence, there is a lack of effective intervention strategies. Here, by comparing the target with sorafenib, we show that regorafenib-induced liver injury is mainly due to its nontherapeutic target Eph receptor A2 (EphA2). EphA2 deficiency attenuated liver damage and cell apoptosis under regorafenib treatment in male mice. Mechanistically, regorafenib inhibits EphA2 Ser897 phosphorylation and reduces ubiquitination of p53 by altering the intracellular localization of mouse double minute 2 (MDM2) by affecting the extracellular signal-regulated kinase (ERK)/MDM2 axis. Meanwhile, we found that schisandrin C, which can upregulate the phosphorylation of EphA2 at Ser897 also has protective effect against the toxicity in vivo. Collectively, our findings identify the inhibition of EphA2 Ser897 phosphorylation as a key cause of regorafenib-induced hepatotoxicity, and chemical activation of EphA2 Ser897 represents a potential therapeutic strategy to prevent regorafenib-induced hepatotoxicity.


Chemical and Drug Induced Liver Injury , Receptor, EphA2 , Male , Animals , Mice , Extracellular Signal-Regulated MAP Kinases/metabolism , Phosphorylation/physiology , Tumor Suppressor Protein p53 , Chemical and Drug Induced Liver Injury/etiology , Receptor, EphA2/metabolism
20.
Phytomedicine ; 114: 154787, 2023 Jun.
Article En | MEDLINE | ID: mdl-37060724

BACKGROUND: Panax notoginseng saponins (PNS), the main active component of Panax notoginseng, can promote vascular microcirculation. PNS exhibits antitumor effects in various cancers. However, the molecular basis of the relationship between PNS and tumor blood vessels remains unclear. PURPOSE: To study the relationship between PNS inhibiting the growth and metastasis of breast cancer and promoting the normalization of blood vessels. METHODS: We performed laser speckle imaging of tumor microvessels and observed the effects of PNS on tumor growth and metastasis of MMTV-PyMT (FVB) spontaneous breast cancer in a transgenic mouse model. Immunohistochemical staining of Ki67 and CD31 was performed for tumors, scanning electron microscopy was used to observe tumor vascular morphology, and flow cytometry was used to detect tumor tissue immune microenvironment (TME). RNA-seq analysis was performed using the main vessels of the tumor tissues of the mice. HUVECs were cultured in tumor supernatant in vitro to simulate tumor microenvironment and verify the sequencing differential key genes. RESULTS: After treatment with PNS, we observed that tumor growth was suppressed, the blood perfusion of the systemic tumor microvessels in the mice increased, and the number of lung metastases decreased. Moreover, the vascular density of the primary tumor increased, and the vascular epidermis was smoother and flatter. Moreover, the number of tumor-associated macrophages in the tumor microenvironment was reduced, and the expression levels of IL-6, IL-10, and TNF-α were reduced in the tumor tissues. PNS downregulated the expression of multiple genes associated with tumor angiogenesis, migration, and adhesion. In vitro tubule formation experiments revealed that PNS promoted the formation and connection of tumor blood vessels and normalized the vessel morphology primarily by inhibiting EphA2 expression. In addition, PNS inhibited the expression of tumor vascular marker proteins and vascular migration adhesion-related proteins in vivo. CONCLUSION: In this study, we found that PNS promoted the generation and connection of tumor vascular endothelial cells, revealing the key role of EphA2 in endothelial cell adhesion and tumor blood vessel morphology. PNS can inhibit the proliferation and metastasis of breast cancer by inhibiting EphA2, improving the immune microenvironment of breast cancer and promoting the normalization of tumor blood vessels.


Neoplasms , Panax notoginseng , Saponins , Animals , Mice , Endothelial Cells , Gene Expression , Neoplasms/drug therapy , Panax notoginseng/chemistry , Saponins/pharmacology , Tumor Microenvironment , Receptor, EphA2/metabolism
...